Hardware Architecture for Asynchronous Cellular Self-Organizing Maps
نویسندگان
چکیده
Nowadays, one of the main challenges in computer architectures is scalability; indeed, novel processor can include thousands processing elements on a single chip and using them efficiently remains big issue. An interesting source inspiration for handling scalability mammalian brain different works neuromorphic computation have attempted to address this question. The Self-configurable 3D Cellular Adaptive Platform (SCALP) has been designed with goal prototyping such types systems led proposal Self-Organizing Maps (CSOM) algorithm. In paper, we present hardware architecture CSOM form interconnected neural units specific property supporting an asynchronous deployment multi-FPGA array. Asynchronous (ACSOM) algorithm exploits underlying Network-on-Chip structure be provided by SCALP order overcome multi-path propagation issue presented straightforward implementation. We explore its behaviour under map topologies scalar representations. results suggest that larger network size low precision coding obtains optimal ratio between accuracy FPGA resources.
منابع مشابه
using game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
Flexible Architecture of Self Organizing Maps for Changing Environments
Catastrophic Interference is a well known problem of Artificial Neural Networks (ANN) learning algorithms where the ANN forgets useful knowledge while learning from new data. Furthermore the structure of most neural models must be chosen in advance. In this paper we introduce an hybrid algorithm called Flexible Architecture of Self Organizing Maps (FASOM ) that overcomes the Catastrophic Interf...
متن کاملArchitecture Optimization Model for the Probabilistic Self-organizing Maps
The PRobabilistic Self-Organizing Maps (PRSOM) become more and more interesting in many fields such as: pattern recognition, clustering, classification, speech recognition, data compression, medical diagnosis, etc. The PRSOM give an estimation of the density probability function of the data, which depends on the parameters of the PRSOM, such as the architecture of the network. When we take a ra...
متن کاملMulti-Dimensional Self-Organizing Maps on Massively Parallel Hardware
Although available (sequential) computer hardware is very powerful nowadays, the implementation of artificial neural networks on massively parallel hardware is still undoubtedly of high interest, not only under an academic point of view. This paper presents an implementation of multi-dimensional Self-Organizing Maps on a scalable SIMD structure of a CNAPS computer with up to 512 parallel proces...
متن کاملSelf-Organizing Maps on the Cell Broadband Engine Architecture
We present and evaluate novel parallel implementations of Self-Organizing Maps for the Cell Broadband Engine Architecture. Motivated by the interactive nature of the datamining process, we evaluate the scalability of the implementations on two clusters using different network characteristics and incarnations (PS3console and PowerXCell 8i) of the architecture. Our implementations use varying com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2022
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics11020215